POLLUTION AND WASTE-TO-ENERGY: MYTH OR REALTY?

Thursday, 07 April 2022, 10:00 – 11:45 CET

ESWET - European Suppliers of Waste-to-Energy Technology

About ESWET

- ESWET is the association representing the European Suppliers of Waste-to-Energy Technology.
- Our main task is to **foster the development** and **dissemination** of Waste-to-Energy Technologies.
- We seek to **raise awareness of the positive implications of the technology** both for the environment and the recovery of energy and materials.
- ESWET has **31 members** which are all suppliers of the main components of Waste-to-Energy plants and are active building and maintaining Waste-to-Energy plants in Europe and throughout the world.

Members

Thursday, 07 April 2022 10:00 – 11:45 CET

POLLUTION AND WASTE-TO-ENERGY: MYTH OR REALITY?

A conversation with

Anita Matic, EUROPEAN COMMISSION

- Leen de Bruycker, CEWEP
- Giovanni Lonati, POLYTECHNIC UNIVERSITY OF MILAN
- Rüdiger Margraf, ESWET
- **Aurélie Moll, ESWET**

Moderated by

Aurélien Ballagny, ESWET

ESWET - European Suppliers of Waste-to-Energy Technology

Thursday, 07 April 2022 10:00 – 11:45 CET

POLLUTION AND WASTE-TO-ENERGY: MYTH OR REALITY?

- Anita Matic, Policy Officer, EUROPEAN COMMISSION
 Waste incineration and the IED: pollution prevention and monitoring requirements
 Leen de Bruycker, Technical Officer, CEWEP
 Presentation on CEWEP's report on dioxins and WtE plants
 Giovanni Lonati, Associate Professor, POLYTECHNIC UNIVERSITY OF MILAN
 Comparison between road traffic and WtE pollution in Northern Italy
 Rüdiger Margraf, Managing Director at LUEHR, ESWET Technical Commmitte
 Presentation on the depollution technologies for WtE
 - Aurélie Moll, Strategic Industry Manager at SICK, ESWET Technical Committee - Presentation on measurement technology and data evaluation from WtE

Panel Discussion and Q&A

ESWET - European Suppliers of Waste-to-Energy Technology

Waste incineration and the IED: pollution prevention and monitoring requirements April 2022

DG ENV Unit C4 Industrial Emissions & Safety

Content

1. IED/E-PRTR

2. Waste incineration and the IED/BAT conclusions

3. IED & E-PRTR revision

Industrial Emissions (IED)

IED regulates around **52 000** of the largest industrial installations

% of installations per industry sector

Supports a **high level of protection** of human health and the environment as a whole

Release of **air pollutants** by industry (based on E-PRTR: Europe-wide register providing environmental data)

Of the EU's overall pollutant emissions (by mass), IED installations account for around: 20% of emissions to air, 20% of emissions to water and 40% of GHG emissions.

Strong links with other EGD policies

Industrial Emissions (E-PRTR Regulation)

- Establishes a database with data on the annual mass emissions of pollutants, covering mostly IED installations
- E-PRTR Regulation (EC) 166/2006, transposes the Kyiv Protocol
- Aims to **inform and involve the public** in environmental decision-making

"The E-PRTR is a crucial tool for the public and key stakeholders to access emission data and to find out about pollution in their area

- Covers 33 countries: EU27 + Iceland, Liechtenstein, Norway, Serbia, Switzerland and UK
- Annual reporting data available as of 2007 (first published in 2009)

https://industry.eea.europa.eu/

Waste incineration (WI) and the IED

Chapter IV and Annex VI

- ELVs safety net: daily and half hourly averages
- Monitoring requirements
- Process conditions
- Compliance assessment rules
- If a derogation granted, IED ELVs remain applicable

Chapter II

- Legally binding status of BAT conclusions under IED
- Permits must be updated within 4 years after publication by **December 2023**!
- Emission limit values (ELVs) in permits must not exceed BAT associated emission levels (BAT-AELs)
- Derogation only in specific and justified cases: (Art 15(4)) of the IED

WI BAT conclusions

What is new?

- BAT-AELs (BAT-associated emission limit values) for air and water emissions
- BAT-AEELs (BAT-associated energy efficiency levels)
- Levels for new and existing plants
- Recovery of materials from bottom ashes

Monitoring

- *More demanding monitoring requirements* including for toxic and persistent organic pollutants such as polychlorinated dioxins and furans and dioxin -like PCBs.
- *Improved sampling procedures* for the monitoring of emission of polychlorinated dioxins and furans and for dioxin-like PCBs that cover other than normal operating conditions such as start-up, shut down and malfunction.
- For continuously monitored pollutants, BAT-AELs set as daily levels only.
- Monitoring of: brominated dioxins and furans; chlorinated dioxins and furans; dioxin-like PCBs and benzo[a]pyrene.

IED/E-PRTR revision process

" The Commission will review EU measures to address pollution from large industrial installations. It will look at the sectoral scope of the legislation and at how to make it fully consistent with climate, energy and circular economy policies." **#EUGreenDeal**

General overview of proposals

To transform IED and Industrial Emissions Portal into forward-looking legislation to accompany the industrial transformation

1. More effective 3. Resources & chemicals 4. Support decarbonisation 2. Support innovation Increase the ambition IED operators' EMS Curb non-ETS Flexible permitting to improve resource emissions in permits for frontrunners efficiency, apply Energy efficiency More accessible Create INCITE to circular economy information on permits requirements ensure latest practices and use and performance technologies are IED review safer chemicals New revised Portal employed Report resource use Transformation plans

5. Scope: widening to critical activities + simplified permits for livestock farms

Thank you

More info?

IED / Industrial Emissions Portal proposals: <u>Green Deal: Modernising EU industrial emissions rules (europa.eu)</u> IED revision: <u>https://ec.europa.eu/environment/industry/stationary/ied/evaluation.htm</u> E-PRTR revision: <u>https://ec.europa.eu/environment/industry/stationary/e-prtr/evaluation.htm</u> CIRCABC: <u>https://circabc.europa.eu/ui/group/06f33a94-9829-4eee-b187-</u> 21bb783a0fbf/library/36379180-c0a6-4b66-9019-64a5a0229116?p=1&n=10&sort=modified_DESC

#IEDIA #EPRTRIA

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

Dioxins and Waste-to-Energy plants

By CEWEP, the Confederation of European Waste-to-Energy Plants

Leen De Bruycker

ESWET webinar – Pollution and Waste-to-Energy: Myth or Reality? - 7th April 2022

European-wide overview of long-term analysis of dioxins in WtE plant surroundings

Dioxins are labelled Persistent Organic Pollutants (POPs) due to bioaccumulation and impact on health and environment

Historically the sector has been associated with dioxin emissions. In light of the more recent attention on the topic, CEWEP prepared the report¹ to:

- Showcase the sector's efforts to reduce its environmental impacts based on practical examples
- Provide an in-depth assessment of the WtE sector's current monitoring practices of dioxins and furans based on extensive data collection from CEWEP members

CEWEP Report

CEWEP Report

Dioxins and Waste-to-Energy Plants – State of the Art

European-wide overview of long-term analysis of dioxins in WtE plant surroundings

Main conclusions:

- 1. European WtE sector one of the **most strictly regulated industries** in terms of pollution prevention and control.
 - Today, WtE dioxin emissions account for less than 0.2% of the total industrial dioxin emissions

Stringent limits for monitoring of dioxins during **different operating stages**

- 2. Regardless of specific measuring equipment a well managed EU WtE plant **emits extremely low concentrations of dioxins and furans** thanks to its sophisticated combustion control and pollution abatement system.
- 3. No correlation between dioxins measured in the environment and emissions at the stack, regardless of periodic or continuous sampling.

European-wide overview of long-term analysis of dioxins in WtE plant surroundings

- 1. European WtE sector one of the most strictly regulated industries in terms of pollution prevention and control.
 - ----> Today, WtE dioxin emissions account for less than 0.2% of the total industrial dioxin emissions¹
 - ---> Stringent limits for monitoring of dioxins during **different operating stages**

1989: Specific stringent legislation for WtE plants to prevent and control pollution.

2019: Publication of <u>Waste Incineration BAT Conclusions</u> with even more ambitious emission limits for dioxins and furans

Note: I-Teq, international toxic equivalent.

¹ European Pollutant Release and Transfer Register, <u>https://industry.eea.europa.eu/</u>

² Best Available Techniques (BAT) Conclusions for waste incineration: <u>Commission implementing decision (EU) 2019/2010 of 12 November 2019</u>

300

Great increase in energy production ٠

2017 2000 2007 2005 2000 2000 2010 2014 Sec. 1 02 2001 2009 2012 2013 205 de la as as S A Energy production, Residual waste energy — Dioxin emissions to air (g) -Source: Avfall Sverige & Marklund et al. electricity and heat (MWh) recovery (tonne)

Great historical decline & Other sources more prominent

Note: WtE included in 'Energy production and distribution'

50 40 PCDD/F, g I-Tec Total 30 20 10 0 2000 2006 2008 2010 2012 2014 2016 2018 1990 1992 1998 2002 1996 2004 994 Public electricity and heat production Petroleum refining Oil and gas extraction Industry Commercial/Institutional Residential ---- Agriculture/Forestry Total

Danish nationwide study²

¹ European Environment Agency (EEA), 2021 EU emission inventory report 1990-2019 under UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). EEA ² Nielsen M., Danish emission inventories for stationary combustion plants. Inventories until 2018. (2021). Danish Centre for Environment and Energy

European-wide overview of long-term analysis of dioxins in WtE plant surroundings

2. Regardless of specific measuring equipment a well managed EU WtE plant **emits extremely low concentrations of dioxins and furans** thanks to its <u>sophisticated combustion control and pollution</u> <u>abatement system</u>.


```
Before After
```

Source: ARC, Denmark, 2019

European-wide overview of long-term analysis of dioxins in WtE plant surroundings

2. <u>Regardless of specific measuring equipment</u> a well managed EU WtE plant **emits extremely low concentrations of dioxins and furans.**

Data assessments, comparisons and long-term experience of operators have shown similar emission patterns between periodic measurements and continuous sampling.

to include abnormal operations Outside normal conditions emissions of dioxins are not significantly higher!

Continuous sampling can also happen

	average of periodic samplings	average of continuous samplings
ng ITEQ /Nm ³	0,011	0,019

Source: SVDU FNADE, 2014 ¹

Source: Indaver, Belgium

European-wide overview of long-term analysis of dioxins in WtE plant surroundings

- 3. No correlation between dioxins measured in the environment and emissions at the stack, regardless of periodic or continuous sampling.
 - Assessments and comparisons between emissions at the stack of WtE plants and concentrations measured in the surroundings have shown that there is no correlation with the plant's emissions.

16

20

20

15

Source: Omrin. Netherlands

European-wide overview of long-term analysis of dioxins in WtE plant surroundings

- 3. No correlation between dioxins measured in the environment and emissions at the stack, regardless of periodic or continuous sampling.
 - Identification of the emission source: a challenging task!

-----> Not possible to guarantee the source solely based on the levels in biomarkers

- No conclusive congener pattern available for municipal waste incineration
- All combustion processes show similar patterns¹

Measurements and patterns should be compared with a framework of measurements from all potential sources in the surroundings, including stack measurements

Thank you for your attention!

CEWEP, the Confederation of European Waste-to-Energy Plants

Leen De Bruycker – <u>leen.de.bruycker@cewep.eu</u>

POLITECNICO MILANO 1863

Comparison between road traffic and WtE pollution in Northern Italy

Prof. Giovanni Lonati *Civil & Environmental Engineering dept.*

Summary

BACKGROUND
Public concerns
Our case studies
CASE STUDY #1
Desio plant
Methods
Results
Conclusions
CASE STUDY #2 Schio plant
Methods
Results
Conclusions
OVERALL CONCLUSIONS

- Reasons for public concerns on WtE plants
- Our case studies:
 - Goals
 - Methods
 - Results
- Overall conclusions

Public concerns

Public concerns Our case studies CASE STUDY #1 Desio plant Methods Results Conclusions CASE STUDY #2 Schio plant Methods Results **OVERALL** CONCLUSIONS

BACKGROUND

Though human health risk assessment show **acceptable incremental risk**, incineration and Waste to Energy (WTE) facilities frequently face **strong protests** from local communities:

- concern about possible adverse health effects associated with atmospheric emissions
- mistrust in plant operators and control authorities
- biased risk perception, lacking proper environmental education (i.e.: levels of risk awareness and knowledge)
- scarce awareness on risk associated with everyday life sources (e.g.: road traffic, domestic heating through biomass burning).
- political position driven preconception

Our case studies

BACKGROUND

CASE STUDY #1

CASE STUDY #2

Schio plant

OVERALL

CONCLUSIONS

Desio plant

Public concerns

Our case studies

Methods

Conclusions

Methods

Results

Results

Development of 2 case studies in Northern Italy

- Common goal:
 - ✓ assess the actual impact of a WtE plant on local air quality
- Common methods:
 - ✓ atmospheric dispersion modelling through CALPUFF model
 - model simulations based on real emission data from CEM systems
- > Specific goals:
 - Case #1 (Desio plant): compare the impact of the WtE plant's stack emissions and local road traffic emissions
 Lonati et al., 2019. The actual impact of waste-to-energy plant emissions on air quality: a case study from Northern

Italy. Detritus, 6, 77-84.

 Case #2 (Schio plant): compare the contribution of the WtE plant's stack emissions with ambient air concentrations

Lonati et al., 2022. Air Quality Impact Assessment of a Waste-to-Energy Plant: Modelling Results vs. Monitored Data. Atmosphere, 13(4), 516

Case study #1

BACKGROUND

CASE STUDY #1

CASE STUDY #2

Schio plant

OVERALL

CONCLUSIONS

Desio plant

Public concerns

Our case studies

Methods

Conclusions

Methods

Results

Conclusions

Results

Desio WtE plant (Lombardia Region) run by BEA SpA

1976 – Plant start-up

1989 – Energy recovery start-up

1997 – District heating start-up

2016 – Plant revamping:

- 40% increase incineration capacity ⁵
- new steam turbine
- new SCR unit for Nox control

Waste throughput (tons/year)

Case study #1 - Methods

BACKGROUND Public concerns Our case studies **CASE STUDY #1 Desio** plant Methods Results Conclusions CASE STUDY #2 Schio plant Methods Results **OVERALL** CONCLUSIONS

Hourly emission data from CEM system:

• flue gas temperature and speed, PM10 and NOx

PCDD/F concentrations from discontinuous monitoring:

 Monthly averaged concentration from continuous sampling for PCDD/F (dioxins)

Two Scenarios simulated

- Scenario A (before plant revamping)
- Scenario B (after plant revamping)
- Model simulations for year 2016 based on meteo data from Regional EPA

NO 1863

Case study #1 - WtE Plant's real emissions

Case study #1 - WtE impact on air quality

BACKGROUND	 NO₂ annual average concentration (plane) 	ant coi	ntribut	ion)
Public concerns	5055			
Our case studies	5054			
CASE STUDY #1 Desio plant	5053	PM10 (μg m ⁻³)	NO ₂ (μg m ⁻³)	PCDD/F (fg _{TEQ} m ⁻³)
Methods Results	5052 5051 5051	4.4·10 ⁻⁴	0.08	8.1·10 ⁻⁴
Conclusions	5050 5050 Urban area	2-3.5·10 ⁻⁴	0.05-0.07	5-7·10 ⁻⁴
Schio plant Methods	Source So	40	40	150 (*)
Results Conclusions	5047	(*) Germa	n guideline	value
OVERALL CONCLUSIONS	510 511 512 513 514 515 516 517 518 519 Coordinata X-UTM32 (WGS84) (km) Scenario B (after revamping) Max: 0.08 μg/m ³ Desio urban area: 0.05-0.07 μg/m ³	2016 iverage (Desio:	NO₂ ani concer : 46.4 μ	nual htration g m ⁻³)

Local road traffic impact on air quality

BACKGROUND	Methods									
Public concerns	• Assessment restricted to main roads (i.e.: national and highly-									
Our case studies	trafficked local roads): about 70% of total traffic emission									
CASE STUDY #1	 Dedicated study for hourly traffic flow of 3 vehicles' classes Emission assessment based on literature emission factors 									
Desio plant										
Methods					A COMPANY STATE					
Results		Cars	LDV	HDV						
Conclusions										
CASE STUDY #2 Schio plant	PM10 (mg km ⁻¹)	39.9	77.4	217.9						
Methods					Carl Carl Carl Carl Carl Carl Carl Carl					
Results	NO ₂ (mg km ⁻¹)	² 152.8 347.	347.9 598.3	598.3						
Conclusions					The south of the second					
OVERALL										
CONCLUSIONS	PCDD/F (pg _{TEQ} km ⁻¹) 21	21 3	1.3 39.6	49.4						
		21.0			Main roads considered (red arches)					

Local road traffic vs. WtE plant

Contribution to NO₂ & PM10 annual average concentration

Coordinate X-UTM32 (WGS84) (km)

Road trafficWTE plant - Scenario BMax: 15-20 μg/m³Max: 0.08 μg/m³Desio urban area: 6-10 μg/m³Desio urban area: 0.05-0.07 μg/m³Max: 5-6 μg/m³Max: 4.4·10-4 μg/m³Desio urban area: 2-3 μg/m³Desio urban area: 2.0-3.5·10-4 μg/m³
Local road traffic vs. WtE plant

Case study #1 - Conclusions

BACKGROUND Public concerns Our case studies CASE STUDY #1 Desio plant Methods Results Conclusions

CASE STUDY #2 Schio plant

Methods Results Conclusions OVERALL

CONCLUSIONS

- <u>Confirmation</u> of WtE plant impact on air quality in Desio urban area

- <u>Relevant downsizing</u> of WtE plant actual impact on local air quality (at least 5x factor for NOx, up to 250x factor for PCDD/F)
- <u>Positive effect</u> of flue gas treatment revamping with strong reduction (60%) of air quality impact for NOx and PCDD/F thanks to SCR in spite of the increased incineration capacity

Max NO₂ annual avg. from 0.003 μ g/m³/kt_{waste} down to 0.001 μ g/m³/kt_{waste}

- Extremely modest contribution of WtE plant emission to ambient concentration levels, both as annual average and as short-term values
- Air quality impact of road traffic emission definitely greater than <u>WtE</u> (orders of magnitude), not only for criteria pollutants (PM10 and NOx) but also for organic and inorganic trace pollutants

Case study #2

Schio WtE plant (Veneto Region) run by AVA Srl

- 3 separate combustion lines, all equipped with moving grate technology
- overall daily waste throughput of about 230 tons day⁻¹

5074-

Coordinata X-UTM (km)

POLITECNICO MILANO 1863

692

694

Case study #2 - Methods

Hourly emission data from CEM system:

- flue gas temperature and speed, PM10 and NOx
- PCDD/F and toxic elements concentrations from discontinuous monitoring
 - Statistical analyses of routinary monitoring data
- Model simulations for year 05-2018/04-2019 based on meteo data from Regional EPA

Case study #2 - WtE Plant's real emissions

Emission limit: 0,1 ng_{I-TEQ} m⁻³ @ ref. conditions

Case study #2 - Methods

Monitoring data

Institutional air quality data

(Schio - via Vecellio monitoring station)

- continuous monitoring: NO₂, PM10
- > periodic sampling: BaP, As, Cd, Ni, Pb

Data from dedicated monitoring campaigns

- > Site R2, R3, R4: September 2018, Feb-Mar 2019 (AVA)
- ➢ Site R1: June 2018 (ARPAV)
 - > As, Cd, Ni, Pb, BaP, PCDD/F, Hg

Case study #2 - WtE impact on air quality

Case study #2 - WtE impact on air quality

Case study #2 - WtE impact on air quality

Case study #2 - Conclusions

BACKGROUND	-
Public concerns	
Our case studies	
CASE STUDY #1 Desio plant	.
Methods	
Results	
Conclusions	-
CASE STUDY #2 Schio plant	
Methods	
Results	
Conclusions	
OVERALL CONCLUSIONS	

- Completely <u>marginal role</u> of the WtE plant's emissions at the network monitoring site, for both NO₂ and PM10 as well as for the regulated toxic pollutants.
- Observed concentration levels due to the contribution of all the sources distributed over the area, with <u>residential biomass</u>
 <u>burning</u>, <u>road transport</u> and some <u>industrial process activities</u> arising as the most significant contributors
- For <u>toxic pollutants</u> estimated contributions due to WtE plant's emissions at least two <u>orders of magnitude lower</u> than ambient levels at the closest site and much lower at the farther sites
- **Provocatory question**: "Do (periodic) ambient monitoring campaigns provide suitable information on the real impact of WtE plant's emission in areas with complex and diversified source activities?"

Overall conclusions

BACKGROUND WtE plant emissions have an impact on air quality -Public concerns as other sources, too Our case studies **CASE STUDY #1** In our studies the contribution of WtE plant's emission to -**Desio** plant ambient level was extremely small (both in absolute and Methods relative terms) and sometimes totally negligible Results Conclusions as other sources are strongly active CASE STUDY #2 Schio plant Regulation, emission control technologies, monitoring & modelling, transparent communication are mandatory **Methods** Results to rise the acceptance of plants Conclusions **OVERALL** CONCLUSIONS Thanks for your attention

Dipl.-Ing. Rüdiger Margraf, Member of the ESWET Technical Committee and Managing Director LUEHR FILTER GmbH

Classification of pollution & separation technologies

- Execution examples FGT for WtE
- Summary

1) Classification of pollution & separation technologies

WI-BREF 2019

Parameter		BATAELS (2006) (typical values)	ELV IED(+CI)	New New BAT-AEL BAT-AEL for new plant for existing plants		Unit	Sampling period
Dust		1 – 5	10 (± 3)	< 2	- 5	mg/Nm [*]	daily
TOC		1 – 10	10 (± 3)	< 3 -	- 10	mg/Nm [®]	daily
HCI		1-8	10 (± 4)	< 2 - 6	< 2 - 8	mg/Nm ^s	daily
HF		1	1 (± 0,4)	< 1	< 1	mg/Nm [®]	daily
SO ₂		1 – 40	50 (± 10)	5 - 30	5 – 40	mg/Nm [®]	daily
NOx	SCR	40 – 100	200 (± 40) 50 - 120 50 - 150		ma/Nm ^{\$}	daily	
	SNCR	120 – 180			50 – 180	ing/Nin	daily
NH ₃	(SNCR)	1 – 10		2 - 10	2 – 10 (15)	mg/Nm*	daily
Hg		0.001 – 0.02	50	< 5 - 20	< 5 – 20	ug/hlm ³	daily
Hg (indicative)			over sampling period	< 15 – 35	< 15 – 40	μg/nilli	indicative half hourly
CO		5 – 30	50 (± 5)	10 – 50		mg/Nm ^s	daily
PCCD/F		0,01 – 0,1	0,1	< 0,01 - 0,04	< 0,01 - 0,06	ng/Nm ^s	lower form compliant
PCCD/F + dIPCB				< 0,01 – 0,06	< 0,01 - 0,08	ng/Nm ³	long term sampling
Cd + TI		0,005 – 0,05	0,05	0,005	- 0,02	mg/Nm [*]	over sampling period
Sb+As+Pb+Cr+Cp+Cu+Mn +Ni+V		0,005 – 0,5	0,5	0,01 – 0,3		mg/Nm³	over sampling period

- Pollutants in solid form
- Acid components
- Further gaseous pollutants
- Further pollutants

- : Particles, heavy metals in solid form
- : HF, HCl, HF
- : Hg, PCDD/PCDF, heavy metals (gaseous)
 - : NO_x (NH₃)

η [%] 99.9 99 90 50 10 0.1 100 [µm] 10 **Fabric filter Fabric filter** Mechanical separator Three-bay dry ESP Wet mechanical separator (coal firing) (scrubber) ----- Single-bay ESP

Particles, particulate heavy metals
 In combination with different additives also acid pollutants, gaseous heavy metals incl. Hg, PCDD/PCDF

Sorption procedures

NO_x reduction

Selective Non Catalytic Reduction

Selective Catalytic Reduction

2) Execution examples FGT for WtE

SNCR & conditioned dry sorption

WtE Spremberg / Germany Emissions 2017

		Hg	C _{ges}	Dust	HCI	CO	SO ₂	NO _x	NH ₃	TNBZ
		mg/m ³	mg/m ³	mg/m ³	mg/m ³	mg/m ³	mg/m ³	mg/m ³	mg/m ³	°C
	AAV RDF boiler	0,00149	0,06	0,84	3,51	8,95	3,25	192,70	2,77	1.009,55
and the second of the second o	Limit value	0,02	10,00	5,00	10,00	50,00	50,00	200,00	10,00	850,00
	Median	0,38	194,92	0,02	3,82	0,19	1,25	6,60	1,88	1.018,28
<image/>	100 80 % 40 20	Annu	ual ave	rage va the in	so ² No	DF boil al limi	er as p t value	AV as perce %] .imit value [1	age of	limit value

Monthly and yearly average values

Measuring component	Unit	Measured value	Emission limit
PCCD/F/PCB TEQ (WHO 2005) excl. BG	ng _{I-TEQ} /m ³	< 0.005	0.1

SNCR & dry sorption

-

WtE Bernburg / Germany emission Report 2017

ZAB

Die Energie Anlage Bernburg GmbH betreibt am Standort Bernburg eine Thermische Abfallbehandlungsanlage zur themischen Verwertung und Beseitigung von außbereiteten Abfällen (Erstatbrennstoffen EBS) und nicht aufbereiteten Abfallen. Die Anlage ist spezielt für die unwerbverträgliche themische Verwertung und Beseitigung von aufbereiteten und nicht aubereiteten ungefährlichen Abfällen (Erstathrennstören EbS) Siedlungs- und Gewerbeabfälle). Die jährliche Betriebszeit der TAB EAB beträgt 8.760 Ivla (365 Tagen pro Jahr über 24 Stunden pro Tag im Schlichterteib).

Betreiber:	Energie Anlage Bernburg GmbH (EAB) Köthensche Straße 3a		
Standort:	06406 Bernburg Werksgelände - EAB Köthensche Straße 3a 06406 Bernburg Verbrennungsanlage der Nr. 8.1.1.3 des A	nhang 1 der 4. BlmSchV	
Ansprechpartner:	Herr Jacobi, Techn. Leiter Herr Licht, Immissionsschutzbeauftragter	Tel.: 03471 / 6898-100 Tel.: 03471 / 6898-220	
Betrachtungszeitraum:	01.01.2017 - 31.12.2017		
Verbrennungsbedingungen		Parameter	
Verbrennungstemperatur (Mindest	temperatur)	850°C	

 Mindestverweitzeit bei Mindestemperahr
 2 Sekunden

 Bezugssauersfolgehalt
 11 Vol.%

 Tabelle1: Einzuhaltende Verbrennungsbedingungen
 11 Vol.%

	Grenzwerte n	ach 17. BlmSchV	Jahresmittelwerte der kontinuierlichen Messung in mg/m ^a					
Emittierte Stoffe	Tages- mittelwert in mg/m ³	Halbstunden- mittelwert in mg/m ³	Linie 1	Linie 2	Linie 3			
Staub	5	20	1,04	0,11	0,38			
Hg	0,03	0,05	0,00029	0,00036	0,00026			
HCI	10	60	9,25	9,15	9,64			
CO	50	100	13,22	9,15	10,07			
NOx	200	400	186,43	190,26	190,84			
NH3	10	15	0,11	0,01	0,17			
Cges	10	20	0,69	0,49	0,45			
SO2	50	200	12,25	11,32	8,22			
HF	1	4	0,60	0,52	0,20			

Tabelle2: Einzuhaltende Emissionsgrenzwerte und Ergebnisse der kontinuierlichen Messungen

In der Tabelle2 sind die Emissionen aufgeführt, die wie in der Genehmigung gefordert, kontinuierlich überwacht und gemessen werden. Diese Messwerte und eventuelle Grenzwertüberschreitungen werden per Emissionsfernüberwachung an die zuständige Überwachungsbehörde übermittelt. Wie aus Tabelle1 ersichtlich, liegen die über das Berichtjahr ermittelten Emissionswerte unterhalb der Grenzwerte. Auch hier wurden die gestzlichen Anforderungen eingehaten.

Durchführung einer amtlichen Einzelmessungen gem. § 13 der 17. BImSchV in der Zeit vom 26.09.-29.09.2017

Abgasparameter		Grenzwerte		Messwerte Linie1		Messwerte Linie2		Messwerte Linie3	
	gem. §4 und § 5 17.BImSchV		als Maximalwert über die Probenahmezeit		als Maximalwert über die Probenahmezeit		als Maximalwert über die Probenahmezei		
Dioxine und Furane (PCDD/PCDF)	0,1	ng TE/m³	0,0000	ng TE/m³	0,0000	ng TE/m³	0,0000	ng TE/m³	
Cadmium, Thalium und deren Verbindungen	0,05	mg/m³	0,0000	mg/m³	0,0020	mg/m³	0,0000	mg/m³	
Schwermetalle Sb; As; Pb; Cr; Co; Cu; Mn; Ni; V; Sn	0,5	mg/m³	0,0200	mg/m³	0,0400	mg/m³	0,0100	mg/m³	
Benzo(a)pyren, As,- Cd,- Co und Cr	0,05	mg/m³	0,0020	mg/m³	0,0050	mg/m³	0,0020	mg/m³	

Die Messergebnisse beziehen sich auf den trockenen Normzustand des Abgases und einem Volumengehalt an Sauerstoff im Abgas von 11 von Hunder (Bezugssauerstoffgehalt) als Maximalwert zuzüglich Messumsicherheit. Die Emissionsensungen wurden durch TÜV Nord Unweitschutz GmbH, einer nach § 20b BInSchG bekanntgegeben Messstelle, durchgeführt.

Tabelle3: Einzuhaltende Emissionsgrenzwerte und Ergebnisse der diskontinuierlichen Messungen

In der Tabelle3 sind die Emissionen aufgelistet, die entsprechend der 17.BlmSchV diskontinuierlich überwacht werden, die gemessenen Emissionswerte unterschreiten ebenfalls die Grenzwerte.

Conditioned dry sorption & SCR & dry sorption

Emission values of WtE plant ENERTEC Hameln, line 4

Continuous measurements					
Pollutant	Unit	YAV			
Dust	mg/Nm ³	0.15			
SO ₂	mg/Nm ³	1.47			
HCI	mg/Nm ³	0.06			
NO ₂	mg/Nm ³	90.6			
HF	mg/Nm ³	0.28			
NH ₃	mg/Nm ³	0.36			
Hg	µg/Nm³	0.19			

Individual measurements						
Pollutants	Unit	YAV				
Sum Cd+TI	mg/Nm ³	< 0.0001				
Sum Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn	mg/Nm ³	0.0018				
Sum As, Cd, Co, Cr, Benzo(a)pyrene	mg/Nm ³	< 0.001				
PCCD/PCDF	ng/Nm ³	< 0.0001				

Extract of emission report 2018 Enertec Hameln Line 4

SNCR & conditioned dry sorption & wet scrubber

Emission values exemplary shown at WtE plant Oulun Energia

REDUSOIDUT HETKELLIS-ARVOT ARVOT NH3 2.00 mg/Nm³ 1.95 mg/Nm³ 12HNE10CQ001 12HNE10CQ901 02 8.70% 12HNE10CQ002 CO2 7.03% 6.86% 12HNE10C0003 12HNE10CQ903 HCL 0.17 mg/Nm³ 0.17 mg/Nm³ 12HNE10CQ004 12HNE10CQ904 s02 0.09 mg/Nm³ 0.08 mg/Nm³ 12HNE10CQ005 12HNE10CQ905 H20 16.90% 12HNE10CQ006 co 16.54 mg/Nm³ 14.75 mg/Nm³ 12HNE10CQ007 12HNE10CQ907 NO 86.02 mg/Nm³ 84.01 mg/Nm³ 12HNE10CQ008 12HNE10CQ908 HF 0.00 mg/Nm³ 0.00 mg/Nm³ 12HNE10CQ010 12HNE10CQ910 NOx 131.72mg/Nm³ 138.73mg/Nm³ 12HNE10CQ011 12HNE10CQ911 TOC 0.31 mg/Nm³ 0.30 mg/Nm³ 12HNE10CQ012 12HNE10CQ912 ARTIKKELIT 0.29 mg/Nm³ 0.28 mg/Nm³ 12HNE10CQ909 12HNE10CQ009 VIRTAUS MARKA 129409.1 Nm³/h

12HNE10CF001

KORJAUS + 1.0

KUIVA 107538.2 Nm³/h 12HNC10CF901

VIRTAUS 156754.7m3/h 12HNC10CF901

3) Summary

- There are several different technologies available to remove the pollutants, which are listed as BAT in the WI-BREF.
- All combinations of technologies in operation reliably fulfil today's and future requirements for emission limits including a sufficient safety margin.
- The selection of technology is made depending on the application not least in regard to fuel composition and energy efficiency.
- The continuous emission monitoring systems (CEMS) allow to monitor the efficiency of the FGT systems.

Thank you for your attention!

Rüdiger Margraf

Managing Director LUEHR FILTER GmbH r.margraf@luehr-filter.com

Aurélie Moll

Member of the ESWET Technical Committee and Strategic Industry Manager CCUS at SICK

Continuous Emission Regulations in Europe FROM WID & LCPD TO BREF

Related standards:

- EN 14181 Quality assurance of automated measuring systems
- **EN 15267** Certification of automated measuring systems

BREF: Best available techniques REFerence Document

Continuous Emission Regulations in Europe: WI BREF

EMISSION LIMITS FOR WASTE TO ENERGY PLANTS

Parameter	Units	Current ELVs	WI BREF 2019 BATAELs		Averaging period
		IED	Existing plant	New plant	
Dust	mg/Nm³	10	<2-5		Daily average
Cd+TI	mg/Nm³	0.05	0.005	5-0.02	Average over the sampling period
Sb+AS+Pb+Cr+Co+Cu+Mn+Ni+V	mg/Nm³	0.5	0.01	-0.3	Average over the sampling period
HF	mg/Nm³	1	<	1	Daily average or average over the sampling period
HCI	mg/Nm³	10	<2-8	<2-6	Daily average
SO2	mg/Nm³	50	5-40	5-30	Daily average
NOx	mg/Nm³	200	50-150 [*]	50-120 [*]	Daily average
			50-180 **		Daily average
CO	mg/Nm³	50	10	-50	Daily average
NH3	mg/Nm³		2-10	2-10	Daily average
TVOC	mg/Nm³	10	<3	-10	Daily average
PCDD/F	ng I-TEQ/Nm ³	0.1	<0.01-0.06	<0.01-0.04	Average over the sampling period
			<0.01-0.08	<0.01-0.06	Long-term sampling period
PCDD/F + dioxin like PCBs	ng WHO-TEQ/Nm ³		<0.01-0.08	<0.01-0.06	Average over the sampling period
			<0,01-0,1	<0,01-0,08	Long-term sampling period
Hg	µg/Nm³	50	<5-20	<5-20	Daily average or average over the sampling period
			1-10	1-10	Long-term sampling period

JRC SCIENCE FOR POLICY REPORT

Best Available Techniques (BAT) Reference Document for Waste Incineration

> Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

Frederik Neuwahl, Gianluca Cusano, Jorge Gómez Benavides, Simon Holbrook, Serge Roudier

2019

- Integration of the second of t
- I-TEQ: International toxic equivalent according to the North Atlantic Treaty Organization* the lower end of the BAT-AEL range can (NATO) schemes be achieved when using SCR

** where SCR is not applicable

- WHO-TEQ: Toxic equivalent according to the World Health Organization (WHO) schemes
- IED: Industry Emission Directive
- WI BREF: Waste Incineration Best Available Technologies Reference Document
- BAT AEL: Best Available Technologies Associated Emission Levels

Measurement technologies and data evaluation from WtE

Continuous monitoring systems

Measurement technologies and data evaluation from WtE

Continuous Emission Monitoring : AMS

Measurement technologies and data evaluation from WtE

Continuous Emission Monitoring: AMS

Continuous Emission Monitoring of all required components according to **the european regulations**

Quality steps according to the European Regulations

Overview on the QAL "EN14181" systematic

Legal linkages

EN 15267-3 Certification of AMS, Performance criteria and test procedures

http://www.csagroupuk.org/services/mcerts/263/

EN 15267-3 Certification of AMS, Performance criteria and test procedures

EN 15267-3 Performance criteria, which must be fulfilled for all analyzers

- > Response time
- > Repeatability standard deviation at zero and span points
- > Lack of fit (linearity) under laboratory and field conditions
- > Zero and span drift under laboratory and field conditions
- Influence of ambient temperature
- Influence of sample gas pressure
- > Influence of sample gas flow for extractive AMS (Automated Measuring System)
- > Influence of voltage variations
- > Influence of vibration

EN ISO/IEC 17025 – Accreditation of Labs

General requirements for the competence of testing and calibration laboratories

1999/2005/2017 Etalonnage et validation d'un système automatique de mesur Procédure QAL 2 - EN 14 181 EUROPÄISCHE NORM EN ISO/IEC 17025 EUROPEAN STANDARD NORME EUROPÉENNE März 2000 ICS 0312020; 19.020 PROPOSITION DE PRESTATION n° 2005-0470-C01 Deutsche Fassung Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien (ISO/IEC 17025 : 1999 aboratoires d'étalonnage et d'e ISO/CEI 17025 - 1999) Proposition de prestation n° 2005-0470-0019 NOBISKO E CURPENENTS SICK MARAK BS EN14181 Calibration ROPÄISCHES KOMITEE FÜR NORMUNG entralsekretariat- rue de Stassart 36 B-1050 Brüss STOP DO NOT ADJUST WITHOUT PRIOR APPROVAL Bet N: EN ISO/IEC 17025 (2000) Type Carried Out Next Due QAL2 & AST

Measurement technologies and data evaluation from WtE

Summary

Long-term stable low emissions at WTE ensured by

- > Continuous monitoring and reporting of emissions
 - with certified AMS (Automated Monitoring Systems)
 - Regulatory Reporting and continuous data acquisition of emissions values
- > European Regulations and WI BREF with legally binding BAT conclusions
- > **Quality insurance of AMS** according to European standards
 - Compliant hardware setup and factory calibration
 - Reliable on-site calibration
 - Ongoing quality check during operation
- > Accredited laboratories for certification of AMS and ongoing quality checks

Thank you for your attention!

Aurélie Moll

Strategic Industry Manager Carbon Capture Utilization & Storage aurelie.moll@sick.de **POLLUTION AND WASTE-TO-ENERGY:** MYTH OR REALITY?

Panel Discussion and Q&A

Anita Matic

Policy Officer, DG Environment, EUROPEAN COMMISSION

- Leen de Bruycker, Technical Officer, CEWEP
- Giovanni Lonati, Associate Professor, POLYTECHNIC UNIVERSITY OF MILAN
- Rüdiger Margraf Managing Director at LUEHR, ESWET TC COMMMITTEE
- Aurélie Moll, Strategic Industry Manager CCUS at SICK, ESWET TC COMMITTEE

POLLUTION AND WASTE-TO-ENERGY: MYTH OR REALITY?

THANK YOU FOR YOUR PARTICIPATION!

For any further information, please write to:

Paolo Nouvion - p.nouvion@eswet.eu www.eswet.eu

ESWET EUROPEAN SUPPLIERS OF WASTE-TO-ENERGY TECHNOLOGY