

The Path to the Green Deal for EU Waste Management The Integrated Resource-Recovery Facility

Patrick Clerens – ESWET Secretary General

5 September 2022

About ESWET

- ESWET is the association representing the European Suppliers of Waste-to-Energy Technology.
- Our main task is to foster the development and information sharing about Waste-to-Energy Technologies.
- We seek to support a **positive Market Design** to maximise the recovery of non-recyclable material.
- Helping to increase R&I funding for the fast evolution towards even more resource and energy efficient plants

ESWET members

The European Green Deal

The EU context

Transition to a circular economy

RAW MATERIAL

The global context

Waste generation is expected to reach **3.40 billion tons by 2050** generating up to 7% of global CO_{2eq} emissions

Landfills and open dumps are still the main treatment options for non-recyclable waste

Waste-to-Energy is recognised globally as a **sustainable solution and investment** to treat non-recyclable waste

EU decisions have an overall influence on the global scale

Role of Waste-to-Energy

- Supplying local, partly renewable, base load energy
- Providing metals and minerals from incineration bottom and fly ashes
- Diverting non-recyclable waste from landfills
- Providing a hygienisation service to the community freeing land for life
 - While being low carbon

Still, more can be done to support the climate objectives exploiting a valuable resource

IRF – A new approach

Adopting a **holistic** approach to go from **carbon neutral** to **carbon negative**

The **Integrated Resource-Recovery Facility (IRF)** is a step-change evolution

From the standard WtE plant

To a stronger generation of sustainable infrastructure incorporating innovative technologies

Integrated Resource-Recovery Facilities

A key enhancing infrastructure to support EU energy & raw material security, decarbonisation and circular economy

European Energy security

From 142 TWh of electricity and heat produced in 2020

Toenhancedenergyefficiencytechnologiestosignificantlyincrease the energy generation.

EU raw material supply security

Both metals and minerals are valuable resources

Addition of new technologies such as dry processing of dry-discharged bottom ash

Source: ZAV Recycling plant

Enhanced recovery of metals and minerals further contribute to the circular economy and decarbonisation, as up to 60kg of CO₂ can be saved by tonne of treated waste!

EU raw material supply security

From bottom ash

Recovering of metals represents a potential market of over 2 billion \in annually, and a potential of reduction of CO_{2eq} emissions of 14.5 million tonnes!

The full potential with enhanced recovery is of:

0.7 million tons of Aluminium 11% of European imports

> 4 million tons of ferrous metals 27% of European imports from Russia

Source: Meldgaard

EU raw material supply security

From fly ash

- ✓ Recovering silicates, potassium chlorides, sodium chloride or other components
- ✓ Recovering zinc and heavy metals
- Using the ash as a base for aggregates

Source: Ash2Salt, EasyMining

Decarbonisation

Integrating carbon capture, storage and utilisation technologies to waste thermal treatment

- ✓ Fully decarbonised plants
- ✓ Contribute to the circular economy by capturing and using recycled CO₂

Amine or enzyme-based capture processes

CO₂ utilisation is developing

For chemicals and minerals Supplying greenhouses Producing synthetic fuels

IRF – A new Paradigm

Traditionally base load energy output, can be re-purposed to serve new urban needs

- Hydrogen production for mobility or gas grid injection leveraging urban localisation
- CO₂ capture with production of synthetic gaseous & liquid hydrocarbons or carbonate minerals

First biological methanation plant in Europe, Source: HZI

Key contributor to the decarbonisation of hard-to-abate sectors while balancing the electrical grid

Policy framework needed

- Preserve the waste management hierarchy
- ✓ Define the full sector's sustainability criteria under the EU Taxonomy
- Consider the IRF's CO2 offsets via a Life Cycle Analysis
- ✓ Maintain the current definition of "biomass" in the Renewable Energy Directive
- Classify hydrogen produced from IRF as partly renewable and partly low carbon hydrogen

Support **CCUS implementation** for IRF to become carbon-negative through both regulation and funding

IRF in the EU Green Deal

Enhanced benefits of IRF

Decarbonisation:

IRF can be carbon negative Partly renewable hydrogen Capture & storage of CO₂ **Circular economy:** Enhanced metal recovery Recovery of salts & metals Recycled CO₂

Supply security:

Raw material & energy Stability of the grid Synthetic fuels

European Suppliers of Waste-to-Energy Technology

Avenue Adolphe Lacomblé 59 BE -1030 Brussels

Tel.: +32 2 743 29 88

